

H2FUTURE - Hydrogen from electrolysis for low carbon steelmaking

Brussels, 8th February 2018

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY

Challenge: Massive Growth in Surplus Electricity and Potential Curtailments

Source: Frontier Economics; Germany

- **Transport sector** / quota for biofuels
- Industry sector / alternative processes
- Heating sector / renewable gases

Quelle: http://www.nature.com/nclimate/journal/v6/n1/fig_tab/nclimate2870_F2.html

Scenario for Transformation: Decarbonisation of Steel Maker voestalpine

Preconditions: energy, raw materials, global competition, ...

voestalpine

VERBUND: At the Forefront of Green Energy

H2FUTURE

- Project Partners:
 - VERBUND Solutions GmbH (project coordinator)
 - voestalpine Stahl GmbH
 - Siemens AG
 - K1-MET GmbH
 - Austrian Power Grid AG (APG)
 - Energy research centre of the Netherlands (ECN)
- Project Budget:
- 18 million EUR
- Total Funding: 12 million EUR by FCH JU
- Project Duration:
- 4.5 years, starting 1st January 2017

Verbund

voestalpine

SIEMENS

Installation & Operation of an Electrolysis System at the voestalpine Production Site in Linz, Austria

Source: Siemens, Silyzer 200

Source: voestalpine

Key Data

- 6 MW PEM electrolyser
- Pilot plant commissioning end of 2018
- From 2019: 26-month demonstration and quasicommercial operation

Hydrogen for steel making:: Max. pressure 150 mbar Quality ≥ 98% Dew point ≤ 10 °C

Source: Siemens AG

How Does a Protone Exchange Electrolyser Work?

 $2 H_2 O \rightarrow 2 H_2 + O_2$

H2FUTURE:

- 600 (12x50) cells
- 0.5 m²/cell membrane area
- 2V cell voltage
- 10 kA/m² current density

- Design and installation of a 6 MW Siemens PEM electrolyser system at the voestalpine steel
 plant in Linz, Austria
- Industrial integration of renewable hydrogen production in the steelmaking process
- 26-month demonstration of the electrolyser system
 - Stress tests / continuous operation 24/7
 - Prequalification for power reserve markets (primary, secondary and tertiary control)
 - Integration of the electrolyser system into the steelworks operation
 - Quasi-commercial operation with revenue streams from both hydrogen and power
- Accompanying analysis of different operation modes and monitoring of KPIs
- **Continued operation** of the electrolyser after the end of the project

Project Timetable Overview of Work Packages (WP)

Task		VEAR 2	YEAR 3	YEAR 4	YEAR 5
WP1	Project Managemen	t-and Coordination			
WP2	Specification of Pilo	t Tests and Operation	is Phase		
WP3	Detailed Engineering	of the Critical Buildi	ng Blocks		
WP4	Manufacturing	and Factory Testing	of the Electrolyser Sys	tem	
WP5		Development and Va	lidation of the Link wi	th Power and Energy	Markets
WP6	Ins	stallation of the Infras	tructure for the Elect	rolyser System	
WP7		Unit Integ	ration and Onsite Vali	dation of the Full Pilo	t
WP8			Two Year Demon	stration	
WP9	Impacts of the	Project Results and E	xploitation		
WP10	Dissemination of the	Project Results			
		:			

Current Status of H2FUTURE

Manufacturing of 6 MW PEM electrolyser (Silyzer 300)

Already in production

Permitting process

• Permit received at the end of 2017

Engineering documentation and KPIs

 Detail engineering and KPIs have been defined

Start of construction

Beginning of 2018

FCH JU

19 deliverables submitted

Press Conference at Kick-Off Meeting in February 2017

H2FUTURE

CEOs of voestalpine, Siemens and VERBUND and Executive Director of FCH JU

- Extensive press coverage ٠
- Article in Financial Times •
- International attention beyond EU ۰
- European flagship project ٠

http://www.h2future-project.eu

Rudolf Zauner Head of Hydrogen Center

VERBUND Solutions GmbH Europaplatz 2, 1150 Wien, Austria T +43 (0)50 313-52 464 M +43 (0)664 828 5946 <u>rudolf.zauner2@verbund.com</u>